next up previous
suivant: Les nombres entiers monter: La prise en mains précédent: Développements limités et généralisés

Équations différentielles

Nous ne ferons qu'effleurer les possibilités de MuPAD en ce domaine. La résolution se fait en deux étapes qu'on peut d'ailleurs combiner.

Tout d'abord, il s'agit de saisir l'EDO à l'aide de la commande

ode({équation,CondInit},FonctionInconnue(Variable)

On peut le rentrer de manière naturelle

$ »$ ode(y''(t)+4*y(t)=sin(t),y(t));

et MuPAD traduit sous la forme $ f(y'(t),y(t),t)=0$

$ »$ ode(- sin(t) + 4 y(t) + diff(y(t), t, t), y(t))

Il ne reste plus qu'à résoudre à l'aide de la commande solve

$ »$ solve(%);

Nous nous contenterons de cette approche algébrique.



moi 2005-06-08